Constraining the Properties of Dark Energy using SNAP

Dragan Huterer

(Case Western Reserve University)

Dark Energy:

Parameterize with

$$\Omega_X = \rho_X/\rho_c$$
 $w = \frac{p_X}{\rho_X}$

$$H^{2}(z)/H_{0}^{2} = \Omega_{M}(1+z)^{3} + \mathbf{\Omega_{X}} \exp \left[3 \int_{0}^{z} (1+\mathbf{w}(\mathbf{z}')) d \ln(1+z')\right]$$
$$r(z) = \int_{0}^{z} \frac{dz'}{H(z')}$$

- $\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho_M + \rho_X + 3p_X)$ $\Rightarrow p_X \text{ (and } w \text{) are strongly negative}$
- \bullet Current SNe Ia data: $w \lesssim -0.6$
- $\rho_X/\rho_M \propto (1+z)^{3w}$
 - \Rightarrow dark energy is important only at $z\lesssim 2$

Dark Energy Unknown Component, Ω_{u} , of Energy Density

SNAP Satellite
Target Statistical Uncertainty

The Wish List:

- 1) A large, well-calibrated set of type Ia SNe...
- 2) ... covering the interval 0 < $z \lesssim 2$

Current ground-based data compared with binned simulated SNAP data and a sample of Dark Energy models.

Probing w(z): Reconstruction

(Starobinsky 1998; Huterer and Turner 1999; Chiba and Nakamura 1999)

$$1 + w(z) = \frac{1+z}{3} \frac{3H_0^2 \Omega_M (1+z)^2 + 2(d^2r/dz^2)/(dr/dz)^3}{H_0^2 \Omega_M (1+z)^3 - (dr/dz)^{-2}}$$

This approach is:

• **general:** no assumptions about w(z) needed

but also

• challenging in practice: Reconstruction depends on the second derivative of r(z). Need to smooth the data first.

Conclusions

- \bullet For now, Dark Energy is described by Ω_X and w
- \bullet Covering the redshift range 0 < $z \lesssim$ 2 is crucial:
 - a) to break parameter degeneracies
 - b) to distinguish between Dark Energy models
- The ultimate goal is to constrain w(z): SNAP could constrain w_0 and w' to about 0.03 and 0.12
- Complementary information on Ω_M and Ω_{TOT} will be very important, especially in order to get w(z)
 - \Rightarrow LSS, CMB

but also weak lensing with SNAP!